Properties of an Alternate Lax Description of the KdV Hierarchy
نویسندگان
چکیده
We study systematically the Lax description of the KdV hierarchy in terms of an operator which is the geometrical recursion operator. We formulate the Lax equation for the n-th flow, construct the Hamiltonians which lead to commuting flows. In this formulation, the recursion relation between the conserved quantities follows naturally. We give a simple and compact definition of all the Hamiltonian structures of the theory which are related through a power law.
منابع مشابه
The (N,M)–th KdV hierarchy and the associated W algebra
We discuss a differential integrable hierarchy, which we call the (N,M)–th KdV hierarchy, whose Lax operator is obtained by properly adding M pseudo–differential terms to the Lax operator of the N–th KdV hierarchy. This new hierarchy contains both the higher KdV hierarchy and multi– field representation of KP hierarchy as sub–systems and naturally appears in multi–matrix models. The N + 2M − 1 ...
متن کاملIntegrable dispersionless KdV hierarchy with sources
An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented. PACS number: 02. 03. Ik
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملNEW INTEGRABLE EXTENSIONS OF N=2 KdV AND BOUSSINESQ HIERARCHIES
We construct a new variety of N = 2 supersymmetric integrable systems by junction of pseudo-differential superspace Lax operators for a = 4, N = 2 KdV and multi-component N = 2 NLS hierarchies. As an important particular case, we obtain Lax operator for N = 4 super KdV system. A similar extension of one of N = 2 super Boussinesq hierarchies is given. We also present a minimal N = 4 supersymmetr...
متن کاملLax pair formulation of the N = 4 Toda chain ( KdV ) hierarchy in N = 4 superspace
Lax pair and Hamiltonian formulations of the N = 4 supersymmetric Toda chain (KdV) hierarchy in N = 4 superspace are proposed. The general formulae for the infinite tower of its bosonic flows in terms of the Lax operator in N = 4 superspace are derived. A new N = 4 superfield basis in which the flows are local is constructed and its embedding in the N = 4 O(4) superconformal supercurrent is est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995